CST207 DESIGN AND ANALYSIS OF ALGORITHMS

Lecture 3: Probabilistic and Recursive Analysis

Lecturer: Dr. Yang Lu Email: luyang@xmu.edu.my Office: A I - 432 Office hour: 2pm-4pm Mon & Thur

Analysis Method

Analyze an algorithm

- Best case
- Worst case
- Average case
 - Probabilistic analysis for randomized algorithm.
 - Recursive analysis for recursive algorithm.

PROBABILISTIC ANALYSIS

The Hiring Problem

Scenario:

- You are using an employment agency to hire a new office assistant.
- The agency sends you one candidate each day.
- You interview the candidate and must *immediately* decide whether or not to hire that person.
- If you hire, you must *immediately* fire your current office assistant.
- Cost to hire is c per candidate (includes cost to fire a current office assistant + hiring fee paid to agency).

The Hiring Problem

- You are committed to having hired, at all times, the best candidate seen so far.
 - You must fire the current office assistant and hire the candidate, if the candidate is better than the current office assistant.
 - Since you must have someone hired at all times, you will always hire the first candidate that you
 interview.
- Goal: Determine total hiring cost if there are *n* candidates.

4

Pseudocode

- If we hire m of n candidates finally, the cost will be cm,
- However, m varies with each run.
 - It depends on the order in which we interview the candidates.

Analysis of the Hiring Problem

- Best case
 - We just hire *one* candidate only.
 - The first is the best. Good luck thanks god.
 - Cost: $B(n) = c \in O(1)$.
- Worst case
 - We hire all n candidates.
 - Each candidate is better than the current hired one. What a tough life!
 - Cost: $W(n) = cn \in O(n)$.
- What is the average case A(n)?
 - Randomized algorithms.
 - Probabilistic analysis.

Probabilistic Analysis

- In general, we have no control over the order in which candidates appear.
- Assume that they come in a random order.
 - The interview score list S is equivalent to a permutation of the candidate numbers < 1, 2, ..., n >.
 - S is equally likely to be any one of the n! permutations. We call this a uniform random permutation.
 - Each of the possible *n*! permutations appears with equal probability.

Probabilistic Analysis

Basic idea:

- Determine the distribution of inputs.
- Analyze the algorithm and compute an expected cost.
- The expectation is taken over the distribution of the possible inputs.
- Thus, averaging the cost over all possible inputs based on the input distribution.
- Unfortunately, for some problems, we cannot describe a reasonable input distribution, and in these cases we cannot use probabilistic analysis.

Distribution of Inputs

In many cases, we know very little about the distribution of inputs.

- In the hiring problem, it seems that the candidates are in a random order, but we have no way of knowing whether or not they really are.
 - Maybe the agent has roughly sorted them in an unknown order?
- In the sequential search problem, what if the key x is always one of the smallest numbers in the array S?
- In the phone book problem, what if we just frequently call the friends whose surname starts with "A"?

Randomized Algorithms

- We are not interested in how the inputs distribute. We are interested in how the algorithm performs.
- Thus, in order to analyze the average case of the hiring algorithm, we must have greater control over the order in which we interview the candidates.
- Under this scenario, we need randomized algorithms.
 - Make randomization within the algorithm, but not rely on the input distribution.

Review the Scenario of Hiring Problem

We change the scenario:

- The employment agency sends us a list of all *n* candidates in advance.
- On each day, we randomly choose a candidate from the list to interview (but considering only those we have not yet interviewed).
- Instead of relying on the candidates being presented to us in a random order, we take control of the process and enforce a random order.
 - Thus, we know that now the candidate order is truly from uniform random permutation.

Randomized Algorithms

- In general, we call an algorithm randomized if its behavior is determined not only by input but also by values produced by a random-number generator.
- Random-number generator
 - RANDOM(a, b) returns an integer r, where $a \leq r \leq b$ and each of the b a + 1 possible values of r is equally likely.
 - In practice, RANDOM is implemented by a pseudorandom-number generator, which is a deterministic method returning numbers that "look" random and pass statistical tests.
 - e.g., random.random(), random.randint(a, b) in Python.

Indicator Random Variables

- We introduce Indicator Random Variables, which is a simple yet powerful technique for computing the expected value of a random variable.
- Given a sample space and an event A, we define the indicator random variable:

$$I\{A\} = \begin{cases} 1 & \text{if } A \text{ occurs,} \\ 0 & \text{if } A \text{ does not occur} \end{cases}$$

Indicator Random Variables

Lemma

For an event A, let $X_A = I\{A\}$. Then $E[X_A] = Pr\{A\}$.

Proof:

By the definition of an indicator random variable and the definition of expected value, we have:

$$E[X_A] = E[I\{A\}]$$

= 1 · Pr{A} + 0 · Pr{\overline{A}}
= Pr{A}

Indicator Random Variables

Example I

Determine the expected number of heads when we flip a coin for n times. The probability of flipping a head is 0.6.

- Denoting event H_i as flipping a head at the *i*th flip, we have $Pr[H_i] = 0.6$.
- Let X be a random variable for the number of heads in n flips. We thus calculate E[X].
- Define indicator random variables $X_i = I \{H_i\}$, for i = 1, 2, ..., n. Hence, $X = \sum_{i=1}^n X_i$.
- Lemma says that $E[X_i] = Pr\{H_i\} = 0.6$ for i = 1, 2, ..., n. So, we finally have

$$E[X] = E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i] = \sum_{i=1}^{n} \Pr[H] = 0.6n.$$

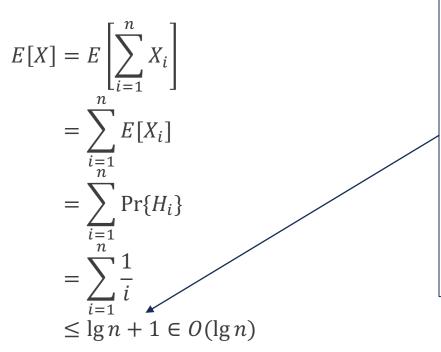
Analysis of the Hiring Problem Using Indicator Random Variables

- Assume that the candidates arrive in a random order.
- Denote the event that candidate i is hired as H_i .
- Let X be a random variable that equals the number of times we hire a new office assistant.
- Define indicator random variables $X_i = I \{H_i\}$, for i = 1, 2, ..., n.
- Then we have $X = \sum_{i=1}^{n} X_i$.

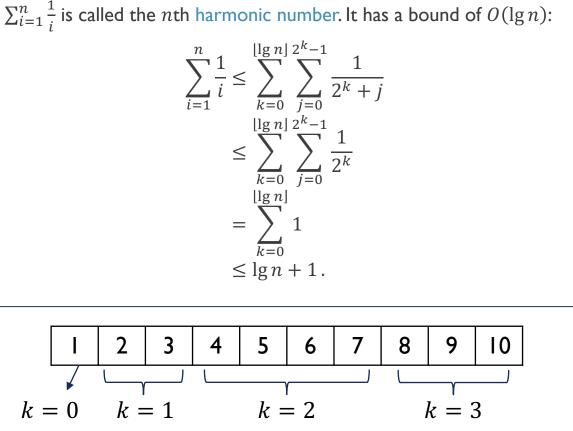
Analysis of the Hiring Problem Using Indicator Random Variables

- By the lemma, we know that $E[X_i] = Pr\{H_i\}$. We need to compute $Pr\{H_i\}$.
- Candidate *i* is hired if and only if candidate *i* is better than each of candidates 1, 2, ..., i 1.
- Assumption that the candidates arrive in random order => candidates 1, 2, ..., i arrive in random order => any one of these first i candidates is equally likely to be the best one so far.
- Thus, $\Pr\{H_i\} = 1/i$.

Analysis of the Hiring Problem Using Indicator Random Variables



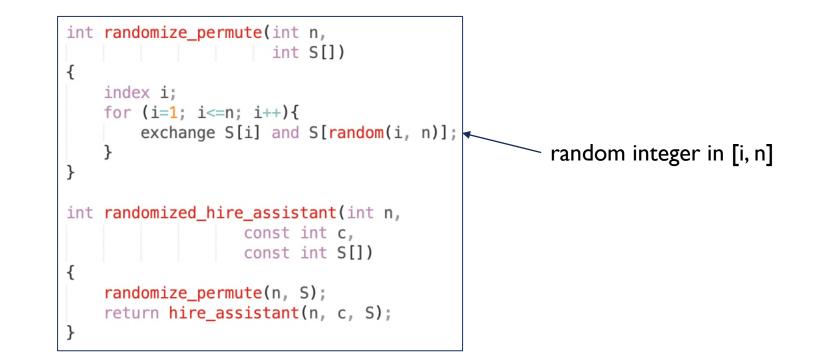
Thus, the expected hiring cost is $O(\lg n)$, which is much better than the worst case cost of O(n).



Randomized Algorithms for the Hiring Problem

- The randomization is now in the algorithm, not in the input distribution.
- Given a particular input, we can no longer say what its hiring cost will be. Each time we run the algorithm, we can get a different hiring cost.
 - The execution depends on the random choices made.
- No particular input always elicits worst-case or best-case behavior.
- Bad behavior occurs only if we get "unlucky" numbers from the random number generator.

Pseudocode for Randomized Hiring Problem



Process of Probabilistic Analysis

- I. Check whether the algorithm is deterministic or randomized. If it is deterministic, modify it to randomized version.
- 2. Identify the random variable X which makes E[X] the result that we want to calculate.
- 3. Identify the event H and its probability $Pr{H}$.
- 4. Define indicator random variables $X_i = I \{H_i\}$, for i = 1, 2, ..., n.
- 5. Identify the relation between X and each indicator random variable X_i .
- 6. Use the lemma $E[X_i] = \Pr\{H_i\}$ and derive E[X].

Example 2: the Hat-Check Problem

- Each of *n* customers gives a hat to a hat-check person at a restaurant.
- The hat-check person gives the hats back to the customers in a random order.
- What is the expected number of customers that get back their own hat?

Example 2 (cont'd)

- Let X be a random variable of the number of customers that get back their own hat, so that we want to compute E[X].
- Denote the event that customer i gets back his own hat as H_i .
- Because there are n hats and the ordering of hats is random, each customer has a probability of 1/n of getting back his or her own hat. So we have $Pr\{H_i\} = 1/n$.
- Define indicator random variables $X_i = I \{H_i\}$, for i = 1, 2, ..., n. We have $X = \sum_{i=1}^n X_i$.
- Now we can compute E[X] by using the lemma:

$$E[X] = E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i] = \sum_{i=1}^{n} \Pr\{H_i\} = \sum_{i=1}^{n} \frac{1}{n} = 1$$

Example 3

- Assume that 12 passengers enter an elevator at the basement and independently choose to exit randomly at one of the 10 above-ground floors.
- What is the expected number of stops that the elevator will have to make?

Example 3 (cont'd)

- Let X be a random variable of the number of stops that the elevator will have to make, so that we want to compute E[X].
- Denote the event that the elevator stops at the *i*th level as H_i .
- $\Pr{H_i} = 1 \Pr{\overline{H_i}} = 1 (1 1/10)^{12} = 1 (9/10)^{12}$.
 - $\overline{H_i}$: the elevator does not stop (no passenger exit) at the *i*th level.
- Define indicator random variables $X_i = I \{H_i\}$, for i = 1, 2, ..., 10. We have $X = \sum_{i=1}^{10} X_i$.
- Now we can compute E[X] by using the lemma:

$$E[X] = E\left[\sum_{i=1}^{10} X_i\right] = \sum_{i=1}^{10} E[X_i] = \sum_{i=1}^{10} \Pr\{H_i\} = \sum_{i=1}^{10} (1 - 0.9^{12}) = 10(1 - 0.9^{12}) \approx 7.176.$$

Example 4

- Let A[1 ... n] be an array of n distinct numbers. If i < j and A[i] > A[j], then the pair (i, j) is called an inversion of A.
- Suppose that each element of A is generated by randomly permutation. What is the expected number of inversions.

Example 4 (cont'd)

- Let X be a random variable of the total number of inverted pairs in A, so that we want to compute E[X].
- Denote the event i < j and A[i] > A[j] as H_{ij} .
- Given two distinct random numbers, the probability that the first is bigger than the second is 1/2. We have $Pr{H_{ij}} = 1/2$.
- Define indicator random variables $X_{ij} = I \{H_{ij}\}$, for $1 \le i < j \le n$. We have $X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}$.
- Now we can compute E[X] by using the lemma:

$$E[X] = E\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}\right] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E[X_{ij}] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{1}{2} = \frac{n(n-1)}{2} \cdot \frac{1}{2} = \frac{n(n-1)}{4}.$$

RECURSIVE ANALYSIS

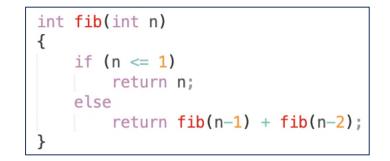
Recursive Analysis

Fibonacci sequence is defined by

$$f_0 = 0$$

 $f_1 = 1$
 $f_n = f_{n-1} - f_{n-2}$, for $n \ge 2$

• 0, 1, 1, 2, 3, 5, 8, 13, 21....



Recursive algorithm to calculate the nth Fibonacci term

Recursive Equation

- For a recursive algorithm, its every-case time complexity T(n) can be written as a recursive equation.
- For example, the recursive equation for calculating the *n*th Fibonacci term:

$$T(n) = \begin{cases} 1 & \text{if } n \le 1, \\ T(n-1) + T(n-2) + 1 & \text{if } n > 1. \end{cases}$$

Goal of recursion analysis: obtain an asymptotic bound Θ or O from the the recursive equation of a recursive algorithm.

Overview of Recursive Analysis Methods

- Substitution method
 - Guess a bound;
 - Prove our guess correct using Mathematical Induction.
- Recursion-tree method
 - Convert the recursion into a tree;
 - Best used to generate a good guess.
- Master method
 - A theorem with three cases;
 - In each case, the result can be directly obtained without calculation.

Technicalities

In practice, we *neglect certain technical details* when we state and solve recursion. It won't affect the final asymptotic results.

- Suppose n is an integer in T(n).
- Omit floors and ceiling.
 - E.g. $T(n) = 2T(\lfloor n/2 \rfloor)$, and $T(n) = 2T(\lfloor n/2 \rfloor)$ are equivalent to T(n) = 2T(n/2).
- As n is sufficiently small, we regard T(n) = T(1), where T(1) denotes the constant.
 - We can simply set T(1) = 1.

Substitution Method

- I. Guess the form of the solution.
- 2. Use *mathematical induction* to find the constants and show that the solution works.

Substitution Method

Example 5

 $T(n) = 2T(\lfloor n/2 \rfloor) + n$

- I. Guess $T(n) \in O(\lg n)$.
- 2. Prove: $T(n) \leq cn \lg n$:
 - **Basis**: When $n = 2, T(2) = 2T(1) + 2 = 4 \le c2 \lg 2$, for choosing c = 2.
 - Inductive step: Suppose $T(\lfloor n/2 \rfloor) \le c(\lfloor n/2 \rfloor) \lg(\lfloor n/2 \rfloor)$.

```
T(n) \le 2 c(\lfloor n/2 \rfloor) \lg(\lfloor n/2 \rfloor) + n
\le cn \lg(n/2) + n
= cn \lg n - cn \lg 2 + n
= cn \lg n - cn + n
\le cn \lg n \text{ (for } c \ge 1)
```


We usually don't need to set n = 1 for the induction basis because it sometimes doesn't work (e.g. can't prove T(1) = $1 \le c1 \lg 1 = 0$). The asymptotic analysis only requires us to prove for $n \ge N$. It is ok to set n = 2 or n = 3 at basis step.

Substitution Method

Example 6

$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$

- I. Guess $T(n) \in O(n)$.
- 2. Prove: $T(n) \leq cn$:
 - **Basis**: When $n = 1, T(1) = 1 \le c$, for choosing any $c \ge 1$.
 - Inductive step: Suppose $T(\lfloor n/2 \rfloor) \le c \lfloor n/2 \rfloor$ and $T(\lfloor n/2 \rfloor) \le c \lfloor n/2 \rfloor$.

 $T(n) \le c \lfloor n/2 \rfloor + c \lceil n/2 \rceil + 1 = cn + 1$

• $T(n) \le cn + 1$ can't imply $T(n) \le cn$. How can we do? (loose) (tight)

- Sometimes the guess is correct, but somehow the math doesn't seem to work out in the induction.
- Usually, the problem is that the inductive assumption isn't strong enough to prove the detailed bound.
- Revise the guess by subtracting a lower-order term often permits the math to go through.

Example 6 (again)

$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$

- I. Guess $T(n) \in O(n)$
- 2. Prove: $T(n) \leq cn b$:
 - **Basis**: When $n = 1, T(1) = 1 \le c b$, for choosing any $c \ge 1 + b$.
 - Inductive step: Suppose $T(\lfloor n/2 \rfloor) \le c \lfloor n/2 \rfloor b$ and $T(\lfloor n/2 \rfloor) \le c \lfloor n/2 \rfloor b$.

$$T(n) \le c \lfloor n/2 \rfloor - b + c \lceil n/2 \rceil - b + 1$$

= $cn - 2b + 1$
 $\le cn - b$ (for $b \ge 1$)

• $T(n) \le cn - b$ can derive $T(n) \le cn$. Therefore $T(n) \in O(n)$ is proved.

Example 7

 $T(n) = 8T(n/2) + 5n^2$

- I. Guess $T(n) \in O(n^3)$.
- 2. Prove: $T(n) \leq cn^3$:
 - **Basis**: When $n = 1, T(1) = 1 \le c$, for choosing any $c \ge 1$.
 - Inductive step: Suppose $T(n/2) \le c(n/2)^3$.

$$T(n) \le 8c(n/2)^3 + 5n^2$$

= $cn^3 + 5n^2$

• $T(n) \le cn^3 + 5n^2$ can't prove $T(n) \le cn^3$. We should subtract a lower-order term.

Example 7 (cont'd)

 $T(n) = 8T(n/2) + 5n^2$

- I. Guess $T(n) \in O(n^3)$.
- 2. Prove: $T(n) \le cn^3 bn^2$:
 - **Basis**: When $n = 1, T(1) = 1 \le c b$, for choosing any $c \ge 1 + b$.
 - Inductive step: Suppose $T(n/2) \le c(n/2)^3 b(n/2)^2$.

$$T(n) \le 8[c(n/2)^3 - b(n/2)^2] + 5n^2$$

= $cn^3 - 2bn^2 + 5n^2$
= $cn^3 - bn^2 - bn^2 + 5n^2$
 $\le cn^3 - bn^2$ (for $b \ge 5$)

• $T(n) \le cn^3 - bn^2$ can derive $T(n) \le cn^3$. Therefore $T(n) \in O(n^3)$ is proved.

Changing Variables

Sometimes, a little algebraic manipulation can make an unknown recursion similar to one you have seen before.

Example 8

$$T(n) = 2T(\lfloor \sqrt{n} \rfloor) + \lg n$$

• Renaming
$$m = \lg n$$
 yields $n = 2^m$ and:

$$T(2^m) = 2T\left(2^{m/2}\right) + m.$$

• We can now rename $S(m) = T(2^m)$ to produce the new recursion:

S(m) = 2S(m/2) + m,

which has a solution of $S(m) \in O(m \lg m)$. Changing back from S(m) to T(n), we obtain:

 $T(n) = T(2^m) = S(m) \in O(m \lg m) = O(\lg n \lg \lg n).$

How to make a good guess:

- Bad News:
 - No general way to guess the correct solutions to recursion.
 - Good guess = E (experience) + C (creativity) + L (luck).
- Good News:
 - Recursion tree often generates good guesses.

Recursion Tree

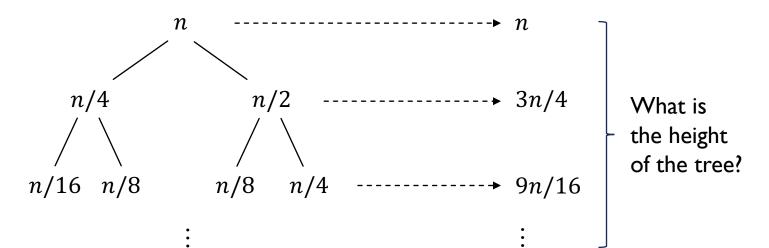
Each node represents the cost of a single subproblem somewhere in the set of recursive function invocations.

- I. We sum all the *per-node costs* within each level of the tree to obtain a set of *per-level costs*;
- 2. We sum all the *per-level costs* to determine the total cost of all levels of the recursion.

Recursion Tree

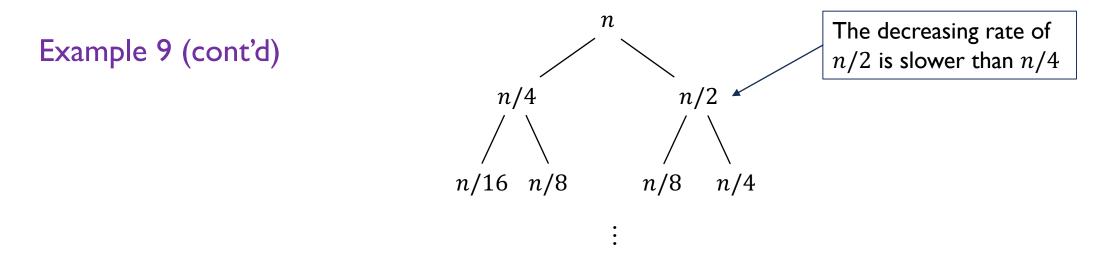
Example 9

T(n) = T(n/4) + T(n/2) + n



XIAMEN UNIVERSITY MALAYSIA 厦門大學馬來西亞分校

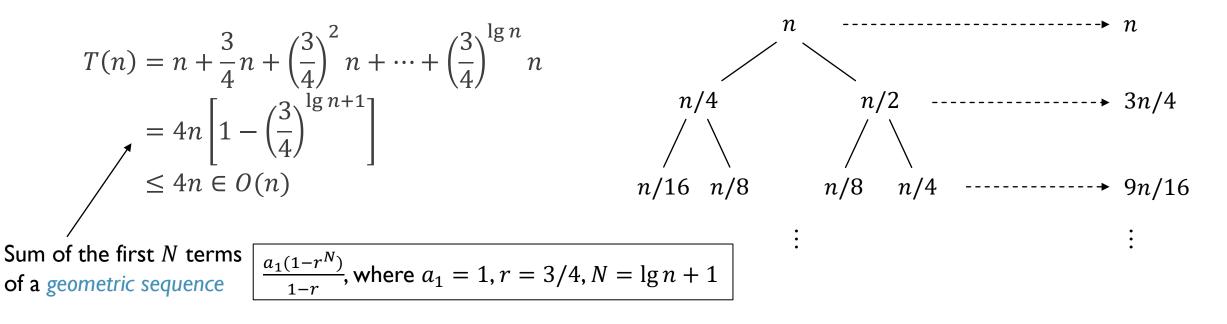
Height of Recursion Tree



- I. Determine the slowest deceasing rate.
- 2. Denote height of the recursion tree as k.
- 3. The node at the leaf of the tree is 1. Therefore $\frac{n}{2^k} = 1$ and $k = \lg n$.

Recursion Tree

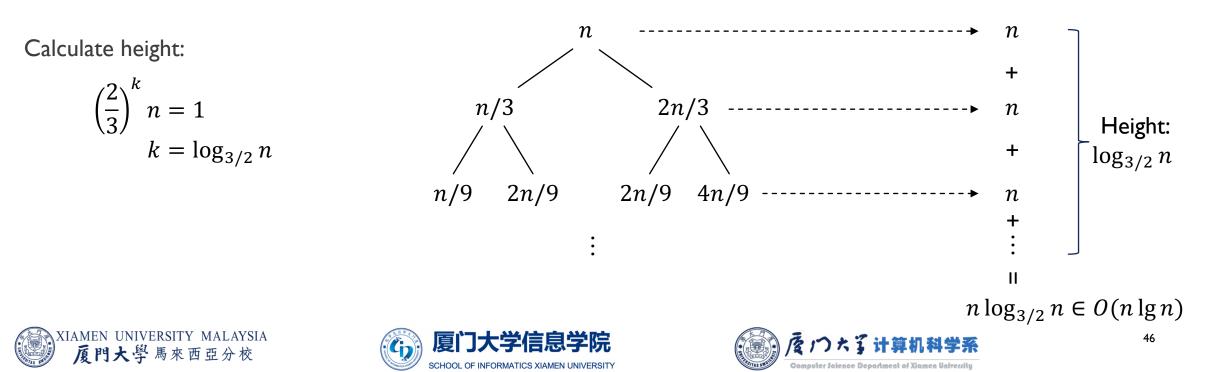
Example 9 (cont'd)



Recursion Tree

Example 10

T(n) = T(n/3) + T(2n/3) + n



The Master Theorem

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recursion

T(n) = aT(n/b) + f(n)

where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then T(n) can be bounded asymptotically with three cases:

- I. If $f(n) \in O(n^{\log_b a \epsilon})$ for some $\epsilon > 0$, then $T(n) \in \Theta(n^{\log_b a})$.
- 2. If $f(n) \in \Theta(n^{\log_b a})$, then $T(n) \in \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) \in \Omega(n^{\log_b a + \epsilon})$ for some $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) \in \Theta(f(n))$.

What does the master theorem mean?

- In each of the three cases, we are comparing f(n) with $n^{\log_b a}$.
- Intuitively, the solution to the recursion is determined by the order of the two functions.
 - If, as in case I, $n^{\log_b a}$ has high order, then the solution is $T(n) \in \Theta(n^{\log_b a})$.
 - If, as in case 2, the two functions are the same order, we multiply by a logarithmic factor, and the solution is T(n) ∈ Θ(n^{log_b a} lg n).
 - If, as in case 3, f(n) has high order, then the solution is $T(n) \in \Theta(f(n))$.

Take a deeper look of the master theorem. Beyond this intuition of comparing order of functions, there are some technicalities that must be understood.

- In case I, not only must f(n) have lower order than $n^{\log_b a}$, its order must be polynomially lower.
 - The order of f(n) must be asymptotically lower than $n^{\log_b a}$ by a factor of n^{ϵ} for some constant $\epsilon > 0$.
- In case 3, not only must f(n) have higher order than $n^{\log_b a}$, its order must be polynomially higher, and in addition satisfy the "regularity" condition that $af(n/b) \le cf(n)$.
 - The order of f(n) must be asymptotically higher than $n^{\log_b a}$ by a factor of n^{ϵ} for some constant $\epsilon > 0$.

- The three cases do not cover all the possibilities for T(n).
- There is a gap between cases I and 2 when the order of f(n) is lower than n^{log_b a} but not polynomially lower.
- Similarly, there is a gap between cases 2 and 3 when the order of f(n) is higher than $n^{\log_b a}$ but not polynomially higher.
- If the function f(n) falls into one of these gaps, or if the regularity condition in case 3 fails to hold, the master method cannot be used to solve the recursion.

$$T(n) = 9T(n/3) + n$$

- We have a = 9, b = 3, f(n) = n, and thus we have $n^{\log_b a} = n^{\log_3 9} = n^2$.
- We thus compare n and n^2 .
- Since $f(n) = n \in O(n^{\log_3 9 \epsilon})$ for $\epsilon = 1$, we can apply case I of the master theorem and conclude that the solution is $T(n) \in \Theta(n^{\log_b a}) = \Theta(n^2)$.

$$T(n) = T(2n/3) + 1$$

• We have
$$a = 1, b = 3/2, f(n) = 1$$
, and thus we have $n^{\log_b a} = n^{\log_{3/2} 1} = n^0 = 1$.

- We thus compare 1 and 1.
- Since $f(n) = 1 \in \Theta(1)$, and thus the solution to the recursion is $T(n) \in \Theta(\lg n)$.

$$T(n) = 3T(n/4) + n \lg n$$

- We have $a = 3, b = 4, f(n) = n \lg n$, and thus we have $n^{\log_b a} = n^{\log_4 3} \approx n^{0.793}$.
- We thus compare $n \lg n$ and $n^{\log_4 3}$.
- Since $f(n) = n \lg n \in \Omega(n) = \Omega(n^{\log_4 3 + \epsilon})$ for $\epsilon \approx 0.2$, case 3 applies if we can show that the regularity condition holds for f(n).
- For sufficiently large n, $af(n/b) = 3(n/4) \lg(n/4) \le (3/4)n \lg n = cf(n)$ for c = 3/4.
- Consequently, by case 3, the solution to the recursion is $T(n) \in \Theta(n \lg n)$.

The master method does not apply to the recursion in the following example.

$$T(n) = 2T(n/2) + nlgn$$

- Even though it has the proper form: $a = 2, b = 2, f(n) = n \lg n$, and $n^{\log_b a} = n$.
- We thus compare $n \lg n$ and n.
- It might seem that case 3 should apply, since the order of $f(n) = n \lg n$ is asymptotically higher than n. The problem is that it is *not polynomially higher*.
- We can't find a constant $\epsilon > 0$ such that $f(n) = n \lg n \in \Omega(n^{1+\epsilon}) = \Omega(n \cdot n^{\epsilon})$

Conclusion

After this lecture, you should know:

- What is a randomized algorithm.
- How to use probabilistic analysis to analyze the average case of an algorithm.
- What is a recursive equation.
- How to draw a recursive tree.
- How to derive the asymptotic result from the recursive equation (three methods).

Assignment I is released. The deadline is 18:00, 4th May.

Thank you!

Reference:

Chapter 4&5, Thomas H. Cormen, Introduction to Algorithms, Second Edition.

Acknowledgement: Thankfully acknowledge slide contents shared by Prof. Yiu-ming Cheung

